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A common approach

Predict relevance r(i, j) of item j to user i
For user i, show items in descending order of r(i, j)

This has been the subject of debate for decades (e.g., Robertson, 1977)

But in practice, it's the still the dominant approach


https://www.emerald.com/insight/content/doi/10.1108/eb026647/full/html

Key questions

1. How do we measure “relevance”?
a. lIs it single-dimensional? Independent across items?
b. How do we get good data on it?
2. If we had a good measure of relevance, how should we use it?

a. What constraints are there?
b. Is descending-order ranking sufficient?



Challenges

Lots!

Measuring value is hard

Inter-item relationships

Capacity constraints

Learning from data generated by deployed system (feedback loops)
Social biases

Two-sided: consumers & creators

Utility-maximization vs. fairness



Beyond fairness in ML

“Fair ML” (in particular, group fairness) typically operates in a classification setting:

e You want to predict some outcome Y given inputs X
e You want to do so in a way that is “fair” (by some definition), often across
demographic attributes A

This is a rich and nuanced area of research

Some of these ideas are useful here, but miss important features of this setting
(e.g., attention, two sided-ness, ...)



Principles for responsible ML for recommendations

e (Consumers

o Provide value

o Respect autonomy
e Creators

o Provide opportunity
o Allocate opportunity fairly



Today’s plan

1. Value, preferences, and data
2. Fairness and errors
3. Building and evaluating a real-world system



Today’s plan

1. Value, preferences, and data



Part 1

Value, preferences, and data



“Relevance”

What do we want to measure?

How do we get that data?

Reminder: we’re only talking about consumers now. We’'ll talk about producers
in the next parts



Relevance: social media

r(i, j): Will user i engage with item j?
Engagement: dwell time, watch time, clicks, likes, etc.

Is engagement the (only) goal of the system?



Relevance: entertainment

r(i, j): Will user i watch video j?

Another goal, perhaps: will user i enjoy video j?



Relevance: shopping

r(i, j): Will user i click on item j? buy item j?
What other goals might a user have? E.g., learn about different products, discover

new ones, etc.



Relevance: employment

r(1, j): Will recruiter i (click on | message | hire) person j?

Quality vs. volume of signals



Common theme: picking the right measurement is hard

Often, we have some data lying around (“digital exhaust”)

Clicks
Browsing data
Upstream outcomes (e.q., profile views, not hires)

Collecting new data is expensive



Quality vs. quantity

Common trade-off

Survey data vs. clicks
Hires vs. profile views

o
[
e Ratings vs. movie watching
[



How do we manage this trade-off?

A basic model:

Suppose you have two measures A and B of a quantity y
Both of them measure the same thing, but with different noise o, and Og
You have n and m samples of each measure

Suppose o, <ogandn<m
o Ais high-quality, low-quantity
o Bis low-quality, high-quantity



Quality vs. quantity, quantified

More precisely:

A= (3, A

1

B=(3_, . B)m

=1...m

A, ~N(y, o,); B. ~ N(y, op)

How do you estimate y? Inverse variance.

§ = (An/s,2 + B-mis.?) | (n/o,? + mlo_2)



Does this solve the problem?

Critical assumption! A and B measure the same thing: value

What if this isn’t true?



What does value mean?

(And how do we measure it?)



Measuring value

What do people want?

Do we just need to ask them? What can we learn from existing data?

Are items independent?
(We will largely set this aside for now)



Three perspectives on social media value

e Computational (Milli, Belli, Hardt ‘21)
e Psychological (Kleinberg, Mullainathan, Raghavan ‘22)
e Empirical (Agan, Davenport, Ludwig, Mullainathan; forthcoming)



https://arxiv.org/pdf/2008.12623.pdf
https://arxiv.org/pdf/2202.11776.pdf

Three perspectives on social media value

e Computational (Milli, Belli, Hardt ‘21)
e Psychological (Kleinberg, Mullainathan, Raghavan ‘22)
e Empirical (Agan, Davenport, Ludwig, Mullainathan; forthcoming)



https://arxiv.org/pdf/2008.12623.pdf
https://arxiv.org/pdf/2202.11776.pdf

From Optimizing Engagement to Measuring Value

* ¢

Linger Linger
>12s >20s

(Milli, Belli, Hardt ‘21)



P(V =1 | Behavior =1)

Behavior Naive Bayes | Click, Open - SLO | Full Model
OptOut 0 0 0
Click 0 0.316 0.652
Open 0 0.442 0.685
UAM 0 0.157 0.719
VidWatch 0 0.254 0.772
Linger > 6s 0 0.264 0.802
LinkClick 0 0.320 0.836
Reply 0.358 0.570 0.932
Linger > 12s 0 0.245 0.948
Fav 0.579 0.672 0.949
RT 0.680 0.720 0.956
Linger > 20s 0.019 0.296 0.991
Quote 1.0 1.0 1.0




Computational perspective: Inferring value

Lots of different signals

Want to know how they relate to “value”

If you have an “anchor,” you can learn the relationship to other signals
Note that this is explicitly different from our naive model, which said that
each signal is a noisy, unbiased measure of “value”



Three perspectives on social media value

e Computational (Milli, Belli, Hardt ‘21)
e Psychological (Kleinberg, Mullainathan, Raghavan ‘22)
e Empirical (Agan, Davenport, Ludwig, Mullainathan; forthcoming)



https://arxiv.org/pdf/2008.12623.pdf
https://arxiv.org/pdf/2202.11776.pdf

The Challenge of Understanding What Users Want

Preferences are inconsistent in structured ways (e.g., time-inconsistency)
One such structure:

e System 1: fast, impulsive choices
e System 2: slow, deliberative choices

Online behavior reflects a combination of these

Mediated by multiple factors: type of content, platform design, length of session,
etc.

(Kleinberg, Mullainathan, Raghavan ‘22)
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Psychological perspective: Impulsivity

Behavior reflects impulsivity

Heterogeneous across content

Influenced by design decisions

Can we learn what activity is impulsive vs. not?



Three perspectives on social media value

e Computational (Milli, Belli, Hardt ‘21)
e Psychological (Kleinberg, Mullainathan, Raghavan ‘22)
e Empirical (Agan, Davenport, Ludwig, Mullainathan; forthcoming)



https://arxiv.org/pdf/2008.12623.pdf
https://arxiv.org/pdf/2202.11776.pdf

Algorithmic Curation Creates Bias

People have in-group bias (e.g., race, ethnicity, religion)
Does this manifest in recommender algorithms?

e Conditioned on explicit preferences, feed algorithm favors in-group
e ...but friend suggest algorithm doesn’t

Why? Automaticity

(Agan, Davenport, Ludwig, Mullainathan; forthcoming)



In-group bias

Automaticity of behavior



Empirical perspective: Automaticity

e Bias increases with automaticity
e Our notion of “value” should reflect this
e The degree to which we trust signals should depend on the automaticity of the

underlying actions



The relationship
between behavior and
value Is structured



Beyond social media

How should these studies change how we think about:

e Entertainment — can we infer whether people are getting value from binging?
e Shopping — people struggle with impulsivity
e Employment — do more automatic behaviors lead to bias?

Note that this is not just at the objective-choosing level.
It's at the algorithmic level



Behavioral foundations

Algorithms learn from data
Data are generated from behavior

— Algorithms need to account for behavior

Kleinberg, Ludwig, Mullainathan, Raghavan ‘22



Algorithms invert psychology

Mind

Actual

Psychology ——
> ehavior

Behavioral Data

Panel A: Algorithm has the right psychology

Algorithm

Assumed Psychology

Mind Reading



Algorithms invert psychology

=

Actual
Psychology

Behavioral Data

Panel B: Algorithm has the wrong psychology

Algorithm

Assumed Psychology

Mind Reading



An example of this in the IR literature: search

An early (wrong) model of search: people pick the best result you show them

A better model: people move down the results list sequentially (e.g., Joachims ‘02)

e Comes from: models of psychology, empirical studies (e.g., Granka et al. ‘04)

This changes the way we design algorithms!

e Structural understanding of what a click means
e \We design algorithms to invert this behavioral model by accounting for
position bias


https://www.cs.cornell.edu/people/tj/publications/joachims_02c.pdf
https://dl.acm.org/doi/10.1145/1008992.1009079

Takeaways: value, preferences, & data

We often want to provide value, but measuring value is hard

Data do not always reflect preferences

...but these differences can manifest in systematic ways

Before we can responsibly allocate attention, we must know what people
value



Part 2

Fairness and errors



Outline

e Fairness
o Group-level fairness
o Framework for fairness considerations in Al
o Classification example
m Fairness dimensions
m Evaluation: outcomes
m Evaluation: models

e Personalized ranking
o Problem space
o Optimization framework
o Measurement challenges

e Evaluation: outcomes
e Evaluation: models



Fairness in classification

Soccer or not soccer?
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Fairness questions

e Product policy
O What is the product meant to do?

® | abeling policy

O What are the labeling rules?

e | abels
O Are they accurate?
O Are there enough?

® Models

O Are they accurate?
o What types of errors do they make?

® Outcomes
O How representative are the images?



Fairness measurements

® Errors: Assume the system design remains unchanged. Do models
or components make errors more frequently for one group (of
content/creator/user) over another?

® Design decisions: What impact does including this model,
component, target metric etc. have on the representation and value
obtained for different groups from the product? These tend to be
questions of tradeoffs rather than clear-cut questions of fair or unfair.



Fairness Dimension Examples

_ Design Decisions/Tradeoffs

Product policy Alternative product design/goals; balancing stakeholder interests; taking on goals
related to diversity or inclusion.

Label policy Label guidelines do not align with label policy; alternative labeling rules or labeling
policies; balancing specificity and complexity.

_ Errors/Mistakes Design Decisions/Tradeoffs

Labels Mis-labeled or inaccurate labels. Sampling frame for model training.

Models Mis-classification. Model architecture, optimization structure,
thresholds; balancing performance for
different groups, balancing inclusion and

errors.
_ Design Decisions/Tradeoffs
Outcomes What is the diversity or representation in the system? How do changes in the rows

above manifest in changes to outcomes or representation?
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Algorithmic Fairness Metrics

® Models, labels, errors

O Based on scores/predictions and labels

® Qutcomes

O Based on predicted class



Algorithmic Fairness Metrics: Models |

Equalized Odds Precision, Recall

« TP/ (TP + FN) * Precision =TP /(TP + FP)

what proportion of actual
positives are labeled positive

* TN/(FP+TN) * Recall =TP /(TP + FN)

what proportion of actual sensitivity; how many relevant items

[ ieved?
negatives are labeled are retrieved:

negative

positive predictive value; how many of
the retrieved items are relevant?

Actual values

Positive Negative
Predicted Positive TP FP
values
Negative FN TN




Algorithmic Fairness Metrics: Models |l

Calibration

The Measure and Mismeasure of Fairness:
A Critical Review of Fair Machine Learnin

Sam Corbett-Davies Sharad Goel
Stanford University Stanford University

August 14, 2018
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Algorithmic Fairness Metrics: Outcomes

Strict parity: TP_+FP_=TP_+FP_

Representation: (TP_+FP_)/N=N_/N

Actual values

Positive Negative
Predicted Positive TP FP
values
Negative FN TN




Algorithmic Fairness Metrics: Models vs
Outcomes

e Fairness typically rooted in model errors rather than

model outcomes _
o Calibration is most in line with equal treatment or
equality of opportunity
o Similar items receive similar treatment independent of group
membership
o For now we are focused on equality, not equity
e Outcome metrics still provide useful signals
o Products may have an interest in diversity in addition to equal

treatment
o Outcome metrics are often used to assess system health and
can guide products through evaluating trade-offs



Personalized Ranking



Why is personalized ranking so
challenging?

® Fairness for creators/providers/items in systems
designed for viewers/consumers



Why is personalized ranking so
challenging?

® Defining relevance

® Position + consumer bias

® People Problems



Why is personalized ranking so
challenging?

1. Defining relevance

a. The task is inherently less well-defined, no universal ground truth for each

item
b. A plethora of sparse data to choose from

c. What is success for the product? How does that map to user experience?

d. The conversion of certain qualitative values into numerical values

2. Position + consumer bias
a. Presentitems in a ranked order (descending order of “relevance”)

b. Complex systems, feedback loops, dependencies
c. Session/composition/temporal effects, attention degrading etc.

d. Potential correlations between consumer groups and creator group

3. People Problems
a. Ablurry line between preference and unfairness

b. Preferences are not fixed
c. Multi-stakeholder systems

Measuring Commonality in Recommendation of Cultural
Content: Recommender Systems to Enhance Cultural
Citizenship

Andres Ferraro
andresferraro@acm.org
McGill University
Montréal, Canada

Gustavo Ferreira
gustavo ferreira@mila.quebec
McGill University
Montréal, Canada

Fernando Diaz Georgina Born
Canadian CIFAR AI Chair University College London
Google London, United Kingdom
Montréal, Canada gborn@ucl.ac.uk
diazf@acm.org



_ Design Decisions/Tradeoffs

Product policy Alternative product topline metrics, product goals, prioritizing one stakeholder (e.g.
consumers, producers, items) group over another.

Ranking policy Alternative ranking rules, inclusion of different components
_ Errors/Mistakes Design Decisions/Tradeoffs
Labels Mis-labeled (position bias) or Sampling for training (sessions vs viewers,
unreliable labels (human behavior). timeframe).
Models Mis-classification (incorrect position, Model architecture, optimization structure,
mis-predicted event). thresholds, interdependent tasks (event
prediction)
_ Design Decisions/Tradeoffs
Outcomes What is the diversity or representation in the system? How do changes in the rows

above manifest in changes to outcomes or representation?



Evaluation: Outcomes



Metrics: Measuring outcomes

O Parity, Skew @ k, Representation @ k
O Regression frameworks
O Gini, Atkinson, Ratios

O Comparison to long term holdouts



Parity, Skew @ rank k, Rep @ rank k

O Google images
m Parity to population
O LinkedIn

m Skew @ k: At rank k, how representative is the
ranked list relative to an appropriate benchmark

O Netflix
m Genre consistency at t and t+1

Less personalized

Unequal Representation and Gender Stereotypes

in Image Search Results for Occupations Fairness-Aware Ranking in Search & Recommendation Systems
Matthew Kay Cynthia Matuszek Seiin A Migigon with Application to LinkedIn Talent Search
Computer Science Computer Science & Electrical Human-Centered Design . : . :
& Engineering | dub, Engineering, University of & Engineering | dub, Sahin Cem Geylkiisnt;ﬁ fCmelerl,_ Knls]?:a:am Kenthapadi
University of Washington Maryland Baltimore County University of Washington © GERSEEIan,
mjskay@uw.edu cmat@umbc.edu smunson@uw.edu

- More
personalized

Calibrated Recommendations

Harald Steck
Netflix
Los Gatos, California
hsteck@netflix.com



Parity, Skew @ rank k, Rep @ rank k

O How do you select a benchmark?
O What about personalization?

B Base on follows, previous plays, previous recommendations
e All affected by the recommendation system

m What about quality-weighting?

m What about dynamic preferences?

O What about unconnected recommendations?



Regression frameworks

O Regression models or covariate rebalancing
O Average outcomes (e.g. plays, clicks) for producer groups

O Rebalance or regress covariates that might impact outcomes (e.g.
genre, number of songs, production quality) and re-assess
averages

O Open Questions:
m What kind of variables to include?
m What about feedback effects?



G

Ini, Atkinson, Ratios

* Measures of inequality

* Tend to be difficult to adapt to group-level
fairness

* Includes qualitative (interpretability) and
empirical (stability and effect detection)
considerations

Measuring Disparate Outcomes of Content Recommendation Algorithms with
Distributional Inequality Metrics

Tomo Lazovich'*, Luca Belli!, Aaron Gonzales !, Amanda Bower !, Uthaipon Tantipongpipat !,
Kristian Lum !, Ferenc Huszar >, Rumman Chowdhury '

! Twitter, Inc.
2 University of Cambridge



Comparison to long term holdouts

O Compare outcomes of interest between users in ranked products
versus users in unranked products (e.g. chronological feeds)

Algorithmic amplification of politics on Twitter

Ferenc Huszar*®<'2(, Sofia Ira Ktena®'3, Conor O’Brien®'®, Luca Belli*?®, Andrew Schlaikjer®®, and Moritz Hardt®

* Key findings:
o Ranked feeds amplify political content
o Right leaning media amplified more than left
leaning



Metrics: Measuring outcomes

® General pitfalls
O Setting the right benchmark or comparison groups
O Does not tell us why differences exist
O Difficult to separate success from historical system bias

® General value
O Diagnostic of potential representative harms

O Even perfectly calibrated systems can lead to wide gaps in
outcomes

O Intuitive (but potentially misleading)



Evaluation: Models



_ Design Decisions/Tradeoffs

Product policy Alternative product topline metrics, product goals, prioritizing one stakeholder (e.g.
consumers, producers, items) group over another.

Ranking policy Alternative ranking rules, inclusion of different components
_ Errors/Mistakes Design Decisions/Tradeoffs
Labels Mis-labeled (position bias) or Sampling for training (sessions vs viewers,
unreliable labels (human behavior). timeframe).
Models Mis-classification (incorrect position, Model architecture, optimization structure,
mis-predicted event). thresholds, interdependent tasks (event
prediction)
_ Design Decisions/Tradeoffs
Outcomes What is the diversity or representation in the system? How do changes in the rows

above manifest in changes to outcomes or representation?



Ranking fairness measurements

e Problem set up

o How are items scored?
o Consumer bias
o Position bias

e Measuring models offline
e Measuring models online



How are items scored?

e Some combination of proxies for relevance
e Model composed of many parts
o Hundreds of features as well as past engagement data



What's the problem?

¢ Consumer bias

o Scores are continuous and depend on session and consumer so
they are not cross-session or cross-viewer compatible
o Tastes and demographics are likely correlated, there will be
spillover in performance between viewers and items
o Position bias

o Attention degrades with position, this can lead to feedback loops

where lower ranked items stay ranked lower (and the rich get
richer)

o Positions are zero sum, unlike classifications

o Each individual event model can be assessed, but lists are rarely
in the order of one model



Consumer bias

country music indie music
90 predicted 90 predicted
lw') 70 actual ) 68 actual

Calibration ratio 1.28 Calibration ratio 1.32



Consumer bias

country music indie music
75 predicted 15 predicted
p— 60 actual 13 actual
=~ Cal ratio 1.25 Cal ratio 1.15
>
15 predicted 75 predicted
& 10 actual 55 actual

Cal ratio 1.5 Cal ratio 1.36



Position bias

e Salganik et al (2006)
o  Experimental music market shows
impact of popularity rank on outcomes
o Lists increase impact of social influence
o More inequality, randomness under
social influence conditions
e Singh and Joachims (2018)
o  Lack of proportionality
o  Small differences in estimated relevance
lead to large differences in exposure
e Agarwal et al (2019)
o Demonstrate decay in propensity to click
on items by swapping items in first
position with items in position k

Experimental Study of Inequality and
Unpredictability in an Artificial
Cultural Market

Matthew ). Salganik,™?* Peter Sheridan Dodds,?* Duncan J. Watts™>>*

Fairness of Exposure in Rankings

Ashudeep Singh Thorsten Joachims
Cornell University Comell University
Ithaca, NY Ithaca, NY
ashudeep@cs.cornell.edu tj@cs.cornelledu

Estimating Position Bias without Intrusive Interventions

Aman Agarwal Ivan Zaitsev
Cornell University Comell University
Ithaca, NY Ithaca, NY
aa2398@cornell.edu iz44@cornell.edu
Xuanhui Wang, Cheng Li, Marc Najork Thorsten Joachims
Google Inc. Comnell University
Mountain View, CA Ithaca, NY

{xuanhui,chgli,najork}@google.com tj@cs.cornell.edu



What is an error?

scores labels




What is an error?

L




What is an error with multiple groups?

A A
B

A

JAN
_




What is an error with multiple groups?

A A

Fairness in Recommendation Ranking
through Pairwise Comparisons

Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao,
Lichan Hong, Ed H. Chi, Cristos Goodrow

alexbeutel,jilinc,tulsee,hgian,liwei, wuyish,heldt,zhezhao,lichan,edchi,cristos@google.com
Google

JAN
_




Measuring models offline

e Calibration

e Pairwise comparisons
o Intragroup pairwise errors
o Intergroup pairwise errors
o Matched pair calibration



Calibration




Pairwise comparisons

Good summary of challenges

Intergroup accuracy

A model is considered to obey inter-group
pairwise fairness if the likelihood of a clicked
item being ranked above another relevant
unclicked item from the opposite group is the
same independent of group, conditioned on the
items have been engaged with the same amount

Intragroup accuracy

A model is considered to obey intra-group
pairwise fairness if the likelihood of a clicked
item being ranked above another relevant
unclicked item from the same group is the same
independent of group, conditioned on the items

have been engaged with the same amount

Fairness in Recommendation Ranking
through Pairwise Comparisons

Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao,
Lichan Hong, Ed H. Chi, Cristos Goodrow

alexbeutel,jilinc,tulsee,hqian,liwei, wuyish,heldt,zhezhao,lichan,edchi, cristos@google.com
Google



Pairwise comparisons |l

e Average label of adjacent items when group A is ahead
versus when group B is ahead

An Outcome Test of Discrimination for Ranked Lists

Jonathan Roth Guillaume Saint-Jacques YinYin Yu
i h@t Ledu ill aintjacq gmail.com yinyyu@linkedin.com
Brown University Apple LinkedIn

Providence, RI, USA USA USA




Pairwise Comparisons ll|

A calibration extension of pairwise comparisons with score matching.
Match on score and adjacency in the ranked list.
We can then compare average labels in this balanced set.

A higher average label indicates the system has under-ranked items from that group.

A /N B A A
_ AN AN R




Pairwise Comparisons | & Il

Pros
e Eliminates issues with cross user and cross session variation in model score by relying on

position
e Isolates to key set of comparisons
e  Relatively computationally efficient

e Ignores scores which makes intervening at the model level difficult.
e Underlying cause is unknown




Pairwise Comparisons ll|

Pros:
e Uses model scores, more akin to calibration

Cons:

e It's hard to know if items even lower in the list would also have higher
average labels.

Scale differences in score versus label space may cause misleading results
Score matching limits our data to places where there are ties

e Decisions we care about

Might be lower in the list

A N B
_ AN AN

A A
_




Measuring models offline: should you do
it?

e Pros

o Safer, less risk to the systems
o Better than not measuring

e Cons
o Less reliable signal
o Risk that findings will not match production
o Limited ability to address position bias
o No counterfactual data (e.g. with different ranking outcomes)



Measuring models online

o Calibration with boosts
o Pairwise Perturbations
o Counterfactual group analysis



Calibration with boosts

| A
A

aa
AR

e Boost from k to position 0 and assess calibration

e Swap(1, k) — interventions, create propensity
estimation to adjust for position bias

e Addresses position bias

e How large to set k?

Estimating Position Bias without Intrusive Interventions

Aman Agarwal Ivan Zaitsev

Cornell University Cornell University
Ithaca, NY Ithaca, NY
aa2398@cornell.edu iz44@cornell.edu
Xuanhui Wang, Cheng Li, Marc Najork Thorsten Joachims
Google Inc. Comnell University

Mountain View, CA Ithaca, NY
{xuanhui,chgli,najork}@google.com tj@cs.cornell.edu



Pairwise perturbations

AD
H A
A A

Swap two items, collect labels

Assess the impact of position bias, position by
position

This also allows for online measurement of the
matched pair metric

Low risk of harm to user experience, minimal
estimation of full impact of feedback effects
Requires very good logging



Counterfactual group analysis

e

e Search a grid of potential group-level score
changes

o If you can obtain a higher product metric value
with nonzero changes to group specific
scores/positions, the ranker is unfair.

An Outcome Test of Discrimination for Ranked Lists Becker’s (1957)
Jonathan Roth* Guillaume Saint-Jacques’ YinYin Yu! ta Ste- based
November 16, 2021 discrimination

Rooney Rule (2003)

Selection Problems in the Presence of Implicit Bias

Jon Kleinberg Manish Raghavan
Cornell University Cornell University



Measuring models online: should you do
it?

® Pros
O More reliable information
O Could theoretically translate quickly to mitigations

® Cons
O More product and user experience risk

O Policy and legal complications



Methods Review

e  Outcomes
o Parity, skew @ k
o Covariate adjusted parity
o Long term holdouts
e Models
o Offline
[ ] Calibration
[ ] Pairwise Comparisons
o Online
[ ] Calibration with boosts
[ ] Pairwise Perturbations
[ Counterfactual group analysis



Methods Review

e  Outcomes
o) Use with a strong notion of desirable benchmark
o Overall health and diversity in a system
o Even well-calibrated systems can have large outcome gaps
e Models
o) Measures variation in system performance
o Calibration most consistent with the Al Fairness literature is challenging in the ranking

setting
o Trade-offs between highly localized measures (pairwise) of fairness and the potential to
disrupt user experiences (exploring more variety in ranking policies)



Design Decisions



Design decisions revisited

e The space is nearly infinite, but here are some real-world examples:
o Product policy
] Additional tools for users
° Skin tone filters on Pinterest
° Chronological Feed on Instagram
] Diversity criteria
° Inclusion of balanced perspectives in news aggregation on Google
News
o Ranking policy
n Boosting/Re-ranking
° Increase demographic representation in candidate search on LinkedIn
L Shift in value model
° Meaningful Social Interaction on Facebook News Feed
o Label policy
L] Casual Conversations Data



Closing thoughts and open questions

You can’t get signal on items you never show, so
some amount of randomness is always good (and
may have good fairness qualities)

Measuring other system components (e.g. sourcing
or candidate retrieval)

How much measurement is enough?

Learning to rank with fairness in mind (up next)



Part 3

Fairness in Learning-to-Rank
and Collaborative Filtering



Large-scale Recommender Systems
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\
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candidate
generation

hundreds

recall.

Low latency, High

. e.g., Nearest Neighbor
. search on embeddings,
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context

ranking

several

. High precision, can
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. computation per item.

' e.g. Learning-to-rank.

user
interface
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Part 3: Outline

How to train a fair recommender system?
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Collaborative Filtering

e Collaborative filtering uses similarities between users and items simultaneously to
provide recommendations, i.e.,
e recommend an item to user A based on the interests of a “similar” user B.

e Common method: Matrix Factorization of the user-item rating matrix.

My 22 B T

Given d dataset Of user arry Ptter The Triplets of Shrek The Dark Memento
item ratings' Y . , Belleville Knight Rises'

Bt = v v v

O

Find a user and item ’ v v
embedding matrix (Uand @ =~ v 7
V), so that the UTV is as e |
close to the ratings matrix. 4 4

Image source: link


https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Missing data in Collaborative filtering

* Conventional loss function assumes ratings are missing
completely at random (MCAR), i.e.,

* Pr[Y, ; is observed] is equal for all u, i.

e Other types of missing data:
* Missing at random (MAR): missingness depends on observable features

* Missing not at random (MNAR): missingness may depend on
observable features, unobservable features and the rating itself. [Little & Rubin 2002]

[Marlin & Zemel 2009]

* Ignoring the missingness mechanism,
e causes evaluation to be biased,

* the ML model predictions could be biased/skewed. [Schnabel et al. ICML 2016]



Handling missing data in Collaborative filtering

» Use inverse propensity scoring loss function
1
peny = argmin{ N o (= VW)’ + AGIVIE + ||W||%)}
u,l

propensity weight

* Propensity Estimation:
Build a discriminative model using the given information to predict

POy, = 1] Xy,).
Observations O \, Propensity
Features X estlmatlon
Observed ratings Y

[Schnabel et al. ICML 2016]




Part 3: Outline

How to train a fair recommender system?

4 N

e Collaborative Filtering
* User Fairness

. AN




User Fairness

Yao & Huang (NIPS 2017) define fairness metrics based on the discrepancy between the prediction
behavior for disadvantaged users and advantaged users. (Group Fairness)

e Value Fairness: Difference in signed error of advantaged and disadvantaged groups.
e Absolute Fairness: Difference in absolute errors of advantaged and disadvantaged groups.
e Underestimation unfairness: inconsistency in how much the predictions underestimate the true

ratings.
e Overestimation unfairness: inconsistency in how much the predictions overestimate the true
ratings
Average predicted score from Average ratings from Average predicted score Average ratings from
disadvantaged users disadvantaged users from advantaged users advailtaged users
. g
1 n o, o
Value Fairness: Uva = — > ’ Eqg [yl;{—[Eq [r];|) — (E-g [¥];|—|E-g [r];
j=1
i i A min |J(P u,v) HU
Trgm using a joint | | pouw ( ,f?, V) =
objective e NG

Loss for recommender model Fairness constraint



Equal access across
user demographics

e Auditing search and recommender
systems for equal access is more
complicated than comparing
engagement metrics across
demographics.

o Dataset sizes differ significantly
across demographics.

o Differences in engagement metrics
and latent satisfaction are confounded
by differences in usage across
genders and age groups.

Mostly open question: How do we compare

metrics across user groups?

- Topic A Topic B Topic C

g \

<}
U7
-
24 ;
O ey

(R s ;

X :

0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0
Query Difficulty
page click count (hardest queries)

‘§ Topic A Topic B Topic C

U -

-

O

O

2- 8 ,.

V] : 9 — ] —
s ——— ’ - : : ; 3 ;
R 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0

Query Difficulty

successful click count (hardest queries)

[Mehrotra et al. WWW 2017, Ekstrand et al. FAT* 2018]
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ltem Fairness

Inter-group pairwise accuracy:

AGi>Gj =
P(f(z)> f(e') | 4 >¥(2,9) € G (&,¥) € G;).

e Aranking model f obeys intergroup pairwise fairness if the likelihood of
correctly ranking a more relevant item x (of group G) over a less relevant item

x’ of another group is equal for all groups G. [Beutel et al. 2019, Narasimhan et al.
2019]

e Beutel et al. propose a regularizer that minimizes the correlation between the
group membership and the model’s predictions.

e Zhou et al. 2019 propose a post-processing method using a monotonic
transformation of the scoring function.
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Probability Ranking Principle
(PRP)

Robertson (1977)

o "if a reference retrieval system’s response THE PROBABILITY RANKING PRINCIPLE IN IR
to each request is a ranking of the
documents in the collection in order of Heate SLOREBTSON

School of Library, Archive, and Information Studies,

decreasing probability of relevance to the Usiiversity College Loudon

user who submitted the request,

The principle that, for optimal retrieval, documents should be ranked in

o where the probabilities are estimated as order of the probability of relevance or uscfulness has been brought into
accu rate|y as pOSSibI e on the basis of question by Cooper. It is shown that the principle can be justified under

. certain assumptions, but that in cases where these assumptions do not hold,

whatever data have been made available the principle is not valid. The major problem appcars to lic in the way the

to the System for this purpose principle considers each document independently of the rest. The nature of

’ the information on the basis of which the system decides whether or not to

o the overall effectiveness of the system to retricve the documents determines whether the document-by-document

its user will be the best that is obtainable AP

on the basis of those data.”



PRP in a two-sided system

Job Candidate Ranking Example

e In two-sided markets, PRP might be Position e P(interview)
inadequate since it does not explicitly 1 A 50.99%
. . . ape 1 .
consider the item-side utility. High Exposure
2 A, 50.98%
e Examples:
o Job Candidate Ranking 3 A; 50.97% Positi
m Amplifies existing societal biases. B(i)ass': on
101 B, 49.99%
Low Exposure
102 B, 49.98%
103 Bs 49.97%

[Singh & Joachims 2018, Biega et al. 2018] 134



PRP in a two-sided system

Music Recommendation Example

e In two-sided markets, PRP might be Position x E[Rating]
inadequate since it does not explicitly 1 B M 4.99
consider the item-side utility. High Exposure
2 (») A 4.98
e Examples: %
o Job Candidate Ranking . 4 As 4.97 Position
m  Amplifies existing societal biases. Bias
o  Music Recommendation
m  Winner-takes-all!
n Ay 4.89
Low Exposure
12 (%, A 4.88
13 (& As 4.87

[Singh & Joachims 2018, Biega et al. 2018] 135



PRP in a two-sided system

e In two-sided markets, PRP might be
inadequate since it does not explicitly
consider the item-side utility.

e Examples:
o Job Candidate Ranking
m  Amplifies existing societal biases.
o  Music Recommendation
m  Winner-takes-all!
o News Ranking
m Polarization of the platform.

[Singh & Joachims 2018, Biega et al. 2018]

News Ranking Example

Position
1

101

102

103

=]

X

Ry

Rz

P(read)
50.99%

50.98%

50.97%

49.99%
49.98%

49.97%

Position
Bias

Low Exposure |

136



In online platforms,

Exposure — Opportunity

Hence,
Fairness — Fair Allocation of Exposure

137



Position-based Model of Exposure

Position

Exposure ey, is the probability a user observes the 1
item at position k.

2
Exposure of a group of items (e.g., seller, artist, etc.)

3

Ew(Gly) = ) e
y(k)EG

Other user-click models: Cascading click model
(CCM), etc. [Chuklin et al. 2015] 101
How to estimate? 102
* Eye tracking poachims et al. 2007] 103

* Intervention studies [Joachims et al. 2017]
* Intervention harvesting [Agarwal et al. 2019]

P[user observes rank k]

€101

€102

€103

138



Fairness of Exposure

Goal: Enable the explicit statement of how exposure is allocated relative to the
value or merit of the items in the group.

For example: Exposure for each individual/group should be proportional to the
relevance of the group.

[Singh & Joachims 2018, Biega et al. 2018]



Equal Expected Exposure

For tasks with graded relevance (e.g., movie ratings — 1 to 5, binary relevance —
0, 1), define equal expected exposure as:

No item has less or more expected exposure as compared to other items in the
same relevance grade.

[Diaz et al 2019]



Disparate Exposure & Impact

Disparate exposure: Allocate exposure proportional to relevance per

group
Exposure « Relevance

Exp(Golx) _ Rel(Golx)
Exp(Gilx)  Rel(G4|x)

Disparate impact: Allocate expected clickthrough rate proportional to

relevance per group
Laec, Exp(d|x) Rel(d|x)  Rel(Go|x)

diaec, Exp(d|x) Rel(d|x) ~ Rel(G4]x)

[Singh & Joachims, KDD 2018] 141



Fairness of Exposure

Objective: Given relevance scores, find a ranking that
optimizes user utility while satisfying fairness of
exposure constraints, e.g., exposure proportional to
average relevance.

Problem:

o Exposure drops off at a different rate than relevance.
o Rankings are discrete combinatorial objects.

m Exponential solution space!

Items  h(x)

0.82
0.81
0.80
0.79
0.78
0.77

Exposure@k

[Singh & Joachims, KDD 2018]




Key Idea 1: Stochastic Ranking Policies

e Ranking Policy

(y|x) is the conditional distribution over
rankings of items under query x.

Define Utility Define Exposure
U(rl|x) = 2 UQylx) - m(ylx) Exp(d|n) = Z ex - P(rank(d) = k| m)
y

k

0.40

0.40

0.16

0.04

[Singh & Joachims, KDD 2018] 143




Key Idea 2: Doubly Stochastic Matrices

Represent a Stochastic Ranking it as a Marginal Rank Distribution IP.

Rank Utility (e.g., DCG, Avg Precision) and Exposure can
~ _ ) be expressed as a Linear function of the matrix.
B IP | For example, DCG(IP) = X; u; . ik
= Lk . ! LFL &k og(14k)
\' S Optimization problem of finding [P that optimizes
utility U and satisfies fairness constraints = Linear
IP; x = Probability of item i at position k. Program

[Singh & Joachims, KDD 2018] 144



Example: Exposure Proportional to Relevance

Items  h(x)
A, 082
A, 0.81
A; 0.80
B, 0.79
B, 078
B, 077

Problem setup: Maximize Utility (e.g., DCG)

Exposure@k

while fulfilling the fairness constraint
(exposure proportional to relevance).

Position

—
(=

. il 1
0.8 E 2 2
0.6 i 3 3
0.4 E 4 4

Q 5 5
0.2 O

6 6
0.0
1 2 3 4 5 6 1 2 3 4 5 6
(a) DCG=3.8193, (b) DCG=3.8044,
DTR=1.7483 DTR=1.0000
Without Fairness IP¢,ir: Proportional
Constraint Exposure

Solution: Ranking Policy

[Singh & Joachims, KDD 2018]



Example: Exposure Proportional to Relevance

Items  h(x)
A, 082
A, 0.81
A; 0.80
B, 0.79
B, 078
B, 077

Exposure@k
e1 Position
1.0
eZ 0.8 ;
0.6 g
e3 0.4 ;g‘
02 0
e4 = 1 2 3 4 5 6
(a) DCG=3.8193,
es DTR=1.7483
e Without Fairness
6 Constraint

[ B N

1 2 3 4 5 6
(b) DCG=3.8044,
DTR=1.0000

P¢.ir: Proportional
Exposure

Solution: Ranking Policy

What if these relevance
predictions are biased?

constraints into a learning to

How to incorporate these
rank framework?

[Singh & Joachims, KDD 2018]



Learning-to-Rank with fairness constraints

For a query x, rank a candidate set S,, = {d4,d5, d3, ... } of items

* d; represented by features ¥ (d;|x), and
* d; has a merit score (e.g., relevance—whether a user would click it or not).

Ranking Policy T maps S, to a ranking.

[Singh & Joachims, NeurlPS 2019] 47



Learning-to-Rank with fairness constraints

For a query x, rank a candidate set S,, = {d4,d5, d3, ... } of items

* d; represented by features ¥ (d;|x), and
* d; has a merit score (e.g., relevance—whether a user would click it or not).

Ranking Policy T maps S, to a ranking.

/Learning objective: Find policy = that maximizes Empirical Risk Minimization with Lagrange
expected utility U with small disparity D multiplier:
- n
1
n* = argmax, E,[U(m|x)] s.t. E,[D(7|x)] < 6. = argmax,,; Z U(r|x;) — A - D(m|x;)
\ i=1

[Singh & Joachims, NeurlPS 2019] 148



Stochastic Ranking Policy (1)

Input features ¥ (d;|x)
|

Candidate Set for
query x: S,

N
e
~
S
Y
N
Y
Y
. s
N .~
S .
.. .
..
..
o -
Pis T
- -~
-
-
.
2

/Plackett-Luce Sampling\

Sample Rankings by
sequentially sampling items
without replacement.

\ /

P1 P2 Pn ")

Softmax

[Singh & Joachims, NeurlPS 2019]
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Stochastic Ranking Policy (1)

Input features ¥ (d;|x)
|

Candidate Set for
query x: S,

/Plackett-Luce Sampling\

Sample Rankings by
sequentially sampling items

)

without replacement.
El Softmax R
- Pr P2 - DY

Training Algorithm:

Can optimize an arbitrary metric U,
e.g., DCG, prec@k, average-rank.

Loss function: REINFORCE loss with the reward as U(m|x;) — A - D(m|x;).
Policy Gradient using Monte-Carlo estimates of gradient.

Using Entropy & Variance Regularization.

[Singh & Joachims, NeurlPS 2019] 10




Stochastic Ranking Policy (1)

Input features ¥ (d;|x)

Candidate Set for
query x: S,

Sample Rankings by
sequentially sampling items

/Plackett-Luce Sampling\

without replacement.
il Softmax R
L PL P2 - Pn"Y

Sequentially
sampling one

item at a time is
slow in practice.

Training Algorithm:

Can optimize an arbitrary metric U,
e.g., DCG, prec@k, average-rank.

Loss function: REINFORCE loss with the reward as U(m|x;) — A - D(m|x;).

Policy Gradient using Monte-Carlo estimates of gradient.
Using Entropy & Variance Regularization.

[Singh & Joachims, NeurlPS 2019] 1°°



Learning-to-Rank with Stochastic Rankings

Sequential sampling to construct a ranking can be expensive, and policy
gradient updates can have high variance.

1. Reparametrize the probability distribution by adding independently
drawn noise samples G; from a Gumbel distribution

5 exp (yq, + Gi
p(di) = i B

2d;eD eXp (Yd,- + Gj)
2. Sort by p(d;) to obtain a ranking.

Can be used for learning as well as deploying stochastic rankings.

[Diaz et al. CIKM 2020; Bruch et al. WSDM 2020]
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Dynamic Learning-to-Rank

How to train a

ranking policy that
adapts the ranking to
user interactions?

HUFFPOST. )

Kudlow Says Trump Administration Will
'Lengthen' Eviction Moratorium
By Hayley Miller

Portland Protesters Breach Fence Around
Federal Courthouse
By Gillian Flaccus and Sara Cline, AP

Police Declare Seattle Protest A Riot, At Least 45

8 Arrested

By Sally Ho and Chris Grygiel, AP

Virus-Weary Texas Braces As Hanna Arrives
By Juan A. Lozano and John L. Mone, AP

Florida's COVID-19 Case Toll Surges Past New
York's As U.S. Deaths Hit 1,000 For 4th Day

By Mary Papenfuss

Why You Should Be Skeptical About Stories Of
People Getting Coronavirus Twice
By Sara Boboltz

[Morik*, Singh*, Hong & Joachims. SIGIR 2020]

Update

User 2

154



Dynamic

Learning-to-Rank

© 6 0 ©

Position Bias

Problem 1: Selection
bias due to position

e Click count is not a consistent
estimator of relevance.

o Lower positions get lower
attention.

O Less attention means fewer
clicks.

® Click feedback is biased by:
o the deployed ranking function
o user’s position bias

Rich-get-richer dynamic: What
starts at the bottom has little
opportunity to rise in the ranking.

Problem 2: Exposure
disparity between groups

® Ranking solely by relevance
may cause some groups to get
most of the exposure on the
platform.
o For the news homepage
example, this may make the
platform seem biased.

[Morik*, Singh*, Hong & Joachims. SIGIR 2020] 155



Estimating Relevance from Clicks

Question: Clicks = Relevance? E'l_:_] >
Key Idea [Joachims 2017]: Understand the =] | =
Observation Mechanism. = | e
Assume a Position-based Model: &l
click(d) =1 & (obs(d) = 1) A (rel(d) = 1) 7l

Problem:
click(d) =0 & (obs(d) = 0) V (rel(d) = 0)
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Estimating Relevance from Clicks

Propensity: p(d) = Pobs(rank(d)) = 1] y]

* Can use position-based exposure ej as an estimate.

Inverse Propensity Score (IPST) Weighting

~ IPS 1 click.(d)
@)= -Z .
Unbiased ‘ T pt (d)

estimator of
relevance

=1

0.7

0.5

1] = 8] = Bl - 3

=] 0.4

'|. [‘“

3 0.3

|N

@

0.2

[Joachims et al. WSDM 2017]
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Estimating Relevance from Clicks

T

o , co(d) . il
L(w)—;;R (@lx)? +- -5 (ee(d) = 2 R*(dlx,) =

w
| l

(o)}
1] |

'|. [“‘

* Train a neural network by minimizing £¢(w).

L2 |
al
N—
» L¢(w) is unbiased i.e., in expectation, L¢(w) is equal to a full

information squared loss (with no position bias).

[Morik*, Singh*, Hong & Joachims. SIGIR 2020]

0.7
0.5
0.4
0.3
0.2
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Fairness Controller (FairCo) LTR Algorithm

FairCo: Ranking at time 7 for query x

0, = argsortycp (f?(dlx) + A errt(d))

P-Controller:

Linear feedback control
system where correction is
proportional to the error.

R(d|x): Estimated
Conditional
Relevance

A>0 [ err(d)=(—-1) rrlaaX(ﬁf (Gi, G(d)))

Handles Selection Bias
(Problem 1)

Handles Exposure Disparity
(Problem 2)

[Morik*, Singh*, Hong & Joachims. SIGIR 2020]
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Part 3: Outline

How to train a fair recommender system?

-

.

* Collaborative Filtering

* Learning-to-Rank

~

* Online Learning, Contextual

bandits, Sequential decision

making (RL)

/

-

* Selection Bias

* User Fairness

e Multistakeholder

k. Feedback loops

Item Fairness

perspective

~

-

e Evaluation
* Pre-processing

* In-processing

/

* Post-processing

.

/
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However, real world recommender systems have other complexities that affect
the applicability of these approaches.



Practical Recommender Systems = Fimess under composition

= Two-stage recommender systems
= Repeated Training



Practical Recommender Systems - Faimess under composition

e Real world recommender systems are
composed of multiple models trained
separately.

e Composition of fair models may not

~

4 Even if two predictors are fair, the
composition of their predictions can

lead to a fair model.
e Goal: make the end-ranking meet
fairness goals.

still be unfair.
[Fairness under Composition, Dwork and llvento,

\ ITCS 2019] /

Example: E[rating]| = P(click) x E[rating|click] = pCTR X pRating.
Author demographics
Component non-white | non-white | white | white
p CT_R U:1 0.2 0.2 0.3 Ranking by pCTR or pRating leads to
pRating . 0.4 0.1 0.3 0.2 <nw, w, w, hw>, but ranking by their
pCTR X pRating 0.04 0.04 0.06 [ 0.06 <J product leads to <w, w, nw, nw>.

[Wang et al. WSDM 2021]



Practical Recommender Systems -

- Two-stage recommender systems

Two stage Recommender systems:
e Candidate generation — Ranking (— User)

| user
—
l millions generation hundreds

[Ma et al. WWW 2020]

user
interface

context

{ Lack of diversity at candidate generation

Wang & Joachims. forthcoming. 2022
may lead to unfair results overall ] [Wang ims. f Ing ]




Practical Recommender Systems - faimes under compositior

Models undergo repeated training (daily, weekly, monthly).

Retraining is done using data that is confounded by
algorithmic recommendations from a previously deployed
system.

Consequences:

e “The recommendation feedback loop causes
homogenization of user behavior”

e “Users experience losses in utility due to
homogenization effects; these losses are distributed
unequally”

e “The feedback loop amplifies the impact of
recommendation systems on the distribution of item
consumption”

Homogeneity

- Two-stage recommender systems
- Repeated Training

0.154

0.104

0.05 1

0.00 1

recommendation
algorithm

...... content

: — ideal
,».-‘\/‘J'\'(.V""rl:"‘wz&w - MF

I'ﬂ e poOpUlarity

random

----- social

iteration

Homogeneity of content recommended

increases with repeated training.

[Chaney et al. RecSys 2018]



Fairness in Sequential Recommender Systems

e Sequential Recommender Systems
such as RL based systems may
need to consider Content-

Provider

o content provider dynamics in
addition to user dynamics.

o optimize for long term content
provider reward.

Content Content
Provider content Provider
Transition provider Response

hidden
Model state Model

[“Towards Content Provider Aware Recommender Systems”, Zhan et al. WWW’21]



Challenges and Open Questions

® Open Questions:
o How do users and item providers experience and perceive “unfairness”?
o Maintaining legality: How can we ensure group fairness without violating
constraints around model inputs (e.g. without using protected
attributes)?
e What did we not cover but is also important?
O Privacy
o User safety and trust
o Explainability and transparency



Thank you

Fair and Socially Responsible ML for Recommendations

https://fair-recs-tutorial.qithub.io/neurips-2022-tutorial/

Hannah Korevaar Manish Raghavan Ashudeep Singh
Research Scientist, Meta Assistant Professor, MIT Applied Scientist, Pinterest


https://fair-recs-tutorial.github.io/neurips-2022-tutorial/
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